Notch Activation of yan Expression Is Antagonized by RTK/Pointed Signaling in the Drosophila Eye
نویسندگان
چکیده
Receptor tyrosine kinase (RTK) signaling plays an instructive role in cell fate decisions, whereas Notch signaling is often involved in restricting cellular competence for differentiation. Genetic interactions between these two evolutionarily conserved pathways have been extensively documented. The underlying molecular mechanisms, however, are not well understood. Here, we show that Yan, an Ets transcriptional repressor that blocks cellular potential for specification and differentiation, is a target of Notch signaling during Drosophila eye development. The Suppressor of Hairless (Su[H]) protein of the Notch pathway is required for activating yan expression, and Su(H) binds directly to an eye-specific yan enhancer in vitro. In contrast, yan expression is repressed by Pointed (Pnt), which is a key component of the RTK pathway. Pnt binds specifically to the yan enhancer and competes with Su(H) for DNA binding. This competition illustrates a potential mechanism for RTK and Notch signals to oppose each other. Thus, yan serves as a common target of Notch/Su(H) and RTK/Pointed signaling pathways during cell fate specification.
منابع مشابه
MAE, a dual regulator of the EGFR signaling pathway, is a target of the Ets transcription factors PNT and YAN
Ets transcription factors play crucial roles in regulating diverse cellular processes including cell proliferation, differentiation and survival. Coordinated regulation of the Drosophila Ets transcription factors YAN and POINTED is required for eliciting appropriate responses to Receptor Tyrosine Kinase (RTK) signaling. YAN, a transcriptional repressor, and POINTED, a transcriptional activator,...
متن کاملA genetic screen for novel components of the Ras/Mitogen-activated protein kinase signaling pathway that interact with the yan gene of Drosophila identifies split ends, a new RNA recognition motif-containing protein.
The receptor tyrosine kinase (RTK) signaling pathway is used reiteratively during the development of all multicellular organisms. While the core RTK/Ras/MAPK signaling cassette has been studied extensively, little is known about the nature of the downstream targets of the pathway or how these effectors regulate the specificity of cellular responses. Drosophila yan is one of a few downstream com...
متن کاملSplit ends antagonizes the Notch and potentiates the EGFR signaling pathways during Drosophila eye development
The Notch and Epidermal Growth Factor Receptor (EGFR) signaling pathways interact cooperatively and antagonistically to regulate many aspects of Drosophila development, including the eye. How output from these two signaling networks is fine-tuned to achieve the precise balance needed for specific inductive interactions and patterning events remains an open and important question. Previously, we...
متن کاملJUN cooperates with the ETS domain protein pointed to induce photoreceptor R7 fate in the Drosophila eye
R7 photoreceptor fate in the Drosophila eye induced by the activation of the Sevenless receptor tyrosine kinase and the RAS/MAP kinase signal transduction pathway. We show that expression of a constitutively activated JUN isoform in ommatidial precursor cells is sufficient to induce R7 fate independent of upstream signals normally required for photoreceptor determination. We present evidence th...
متن کاملThree Distinct Roles for Notch in Drosophila R7 Photoreceptor Specification
Receptor tyrosine kinases (RTKs) and Notch (N) proteins are different types of transmembrane receptors that transduce extracellular signals and control cell fate. Here we examine cell fate specification in the Drosophila retina and ask how N acts together with the RTKs Sevenless (Sev) and the EGF receptor (DER) to specify the R7 photoreceptor. The retina is composed of many hundred ommatidia, e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Current Biology
دوره 12 شماره
صفحات -
تاریخ انتشار 2002